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Abstract—In this paper, we propose a novel visual informa-
tion based framework to solve the real-time speech activity de-
tection problem. Unlike conventional methods which commonly
use the audio signal as input, our approach incorporates facial
information into a deep neural network for feature learning.
Instead of using the whole input image, we further develop
a novel end-to-end landmark pooling network to act as an
attention-guide scheme to help the deep neural network only
focus the related portion of the input image. This helps the
network to precisely and efficiently learn highly discriminative
features for speech activities. What’s more, we implement a
recurrent neural network with the gated recurrent unit scheme
to make use of the sequential information from video to produce
the final decision. To give a comprehensive evaluation of the
proposed method, we collect a large-scale dataset from uncon-
strained speech activities, which consists of a large number
of speech/non-speech video sequences under various kinds of
degradation. Experimental results demonstrate the superiority
of our proposed pipeline over previous approach in terms of
performance and efficiency.

I. INTRODUCTION

Speech Activity Detection (SAD) remains an essential
component in speech processing systems and is an active
research area. It is one of the most popular techniques used
in speech processing systems such as speech coding and
speech recognition. The goal of SAD is to predict whether
the user is speaking or not based on the input signal. This
technique has various applications such as facilitating speech
processing and helping deactivate the processes during the
non-speech section, helping save computation and network
bandwidth by avoiding unnecessary coding/transmission of
silence voice packets through the Internet. A typical SAD
system generally consists of three steps. Firstly, the input
signal, which can be an audio signal or a visual signal,
is collected and pre-processed either by audio recording
or images capturing techniques. Secondly, discriminative
features are extracted from the input signal to form high-level
representations for further processing. Lastly, classification
systems are implemented to predict the input signal to be
speech or non-speech.

Most of conventional SAD systems rely on audio sig-
nals [3, 11, 12, 15]. This is due to the nature that audio
is the most straightforward signal to judge whether a person
is speaking or not. However, audio signal would easily be
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Fig. 1: Typical video sequences in the LSW dataset. The
top two rows show two speech sequences. The bottom two
rows show two non-speech sequences. Our data covers a
wide range of pose variations, e.g., the sequence from the
second row shows the person is speaking with half face
invisible, and the sequence from the last row shows the
person moves his head around but his lip doesn’t move.

influenced by surroundings such as background noise or
unstable audio recording. Under such circumstances, the
performance of such systems is significantly degraded. To
solve this problem, an alternative solution is to use a visual-
based SAD pipeline. Instead of using audio signal, this kind
of systems mainly rely on the features extracted from visual
information [2, 6, 8, 9, 11].

In this paper, we propose a novel visual information based
deep neural network framework to solve the SAD problem.
Following the nature of SAD systems, which tend to have
high requirements of latency and efficiency, we propose a
novel Landmark Pooling Network (LPN). Unlike traditional
neural networks which usually work on the full image or
full feature map, the LPN is able to use facial geometry
information to focus only on the small portion of points
which are supposed to carry more useful information for
the current task. Above this, we implement the recurrent
neural network with the gated recurrent unit to model the
temporal information from the video sequence to have a
better understanding of the input signal. In seek of being
in real-time speed, the proposed model is designed in an
end-to-end manner and to be comparatively small compared
to other deep learning frameworks.

Our work has two main contributions. Firstly, we pro-
pose one novel LPN scheme, which is able to use only
a small portion of the input image to achieve the speech
detection functionality precisely and effectively. Secondly,
we collect a new large-scale dataset from unconstrained
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Fig. 2: Network Architecture using landmark pooling
feature learning. The network starts with one convolutional
layer, followed by a landmark pooling layer and a fully
connected layer. Then, features are fed into the Recurrent
Neural Network (RNN) Gated Recurrent Unit (GRU) for
aggregation. A fully connected layer is applied at every time
step, followed by an average operation. A softmax layer
is added at the end for classification. We only visualize 6
landmarks for demonstration.

speech activities. To our best knowledge, this is the first well-
labeled unconstrained visual-based SAD dataset with good
data samples. The rest of this paper is organized as follows:
Section II describes the details of our new dataset. Section
IIT explains the proposed architecture. Section IV reports the
performance of the model, as well as experimental results
analysis and comparisons. Section V draws the conclusion
of our work and briefly discusses the future work.

II. LSW DATASET DESCRIPTION

Pose variation has long been an issue in visual-based SAD
as well as unconstrained face detection/recognition problems.
To our best knowledge, none of previous work or datasets on
SAD have taken the pose variation issue into consideration.
However, this issue is nontrivial since large pose variations
may lead to significant face feature shift, which may further
lead to detection/recognition failures. To address the SAD
problem in the wild, we build a new large-scale dataset:
Labeled Speech in the Wild (LSW).

The LSW dataset consists of a large number of speech
and non-speech video sequences, which cover a wild range
of face pose variations and viewpoint variations. All the
video sequences are collected from YouTube and are about
“panel discussion” or “roundtable discussion”, since videos
under such theme settings are more likely to involve multiple
speakers with large face pose variations. In total, we collect
45 different YouTube videos. Several typical video sequences
from our LSW dataset are shown in Fig. 1. The top and
bottom two rows represent speech sequences and non-speech
sequences, respectively. The second row gives an example
where the person is speaking while the face is half invisible.
The last row illustrates the example where the person moves
his head around while the lip doesn’t move. Compared to
other existing datasets on this problem, the LSW dataset is
larger, more challenging, and closer to real-life scenarios.

| Set | Num. of subjects | Num. of sequences |
Train 171 8002
Test 24 901
Total 195 8903

TABLE I: Statistics of LSW dataset.

In total, we have collected 5512 speech and 3391 non-
speech sequences. There are 195 subjects in total. Most
sequences have the length of 40 frames. We split them into a
training set and a test set. The split is across different videos,
there are no overlaps between the training set and the test set.
We list the statistics of our dataset in Table I. The dataset is
public available at http://vision.cs.stonybrook.
edu/~boyu/LSW_dataset.zip

III. NETWORK ARCHITECTURE

In this section, we introduce the whole pipeline of the pro-
posed SAD system. The goal of our system is to determine
whether one video sequence as speech or non-speech. We
treat the detection problem as a binary classification problem.
Our network takes both the raw images and facial landmarks
as input. Fig. 2 illustrates our whole network architecture.
The pipeline mainly consists of two parts: the LPN for fast
and accurate high-level feature learning and the RNN for
temporal information modeling and classification.

Our system takes a video sequence as input. At each time
step, the current frame is fed into a convolutional layer
(with 64 filters of size 7 x 7 and stride 2), followed by a
landmark pooling layer, which uses landmark locations to
pool convolutional feature maps. We will describe the details
of LPN in subsection III-A. The LPN can help the network
effectively focus on a certain region of interest, so as to
pay more attention to the changes in the mouth outlines.
We use 20 landmarks around the mouth region for LPN and
concatenate the pooled features into a 20 x 64-dimension
vector. Then we apply one fully-connected layer to project
this vector into a 64-dimension high-level feature vector.
Furthermore, at each time step, the extracted high-level
features are fed into the Recurrent Neural Network (RNN)
with Gated Recurrent Unit (GRU) for aggregation. We use
one layer of GRU cell with RNN size of 64 (dimension of the
memory vectors). The output hidden states of RNN at every
time step will be averaged together. Then a fully connected
layer is added to map the former extracted features into a
two-dimensional vector. A softmax layer is added at the
end for speech and non-speech classification. We use leaky
rectified linear unit (Leaky-ReLU) [13] as our activation
function. The details of each building block in our network
are given in the following subsections.

A. The Landmark Pooling Network

When dealing with the SAD problems, it is natural to
believe that the mouth region is the most important part of
the face. Motivated by this fact, we design a convolutional
neural network (CNN) using only the specific landmark



points around the mouth region. These landmarks perform
as an attention-guide mechanism for the network.

Here we describe the details of our LPN. Given a con-
volutional feature map F of size H x W x C, where H,
W, C are the height, width, and depth of the feature map
respectively (in our case, H = 20, W = 20, C' = 64), and
a 2D facial landmark location vector v of size L x 2, where
L is the number of landmarks to use, in our case, L = 20,
the procedure to learn the landmark-pooling features are as
follows:

e For each landmark located at (z;,y;) on the input
image, we map it to the corresponding locations (&£;, ¥;)
on the feature map F, such that 0 < 2;, < W |
0<y; < H.

« Select the feature vector on F' via a landmark location
(21, 9;), which is computed by f; = F(&;, ¥, :).

o Concatenate all f; together to produce f as the pooled
feature.

The top part of Fig. 2 illustrates the whole process. It can
be trained using standard backpropagation: the gradients only
propagate through the landmark locations.

The LPN benefits our system in several ways: 1). Fewer
parameters. Compared to working on the whole feature map,
landmark pooling can significantly reduce the number of
parameters to learn, so as to reduce the output feature map
size. 2) A better attention mechanism. The network will focus
more on the outline of the mouth, which helps the network
assign higher weights to important locations. Another point
worth mentioning is that instead of locating the landmarks
on the original input image, we do it on the feature map
after the convolutional layer. This is due to the fact that each
pixel on the feature map has a receptive field of 7 x 7 on the
original image. By doing so, the features are learned from the
landmark’s all neighbor pixels, which is more reliable than
only using the landmark pixel. We use the Recurrent Neural
Network [14] with Gated Recurrent Unit (GRU) to model the
temporal information of previous extracted spatial features at
every time step. GRU [4] is a recently proposed variant of
RNN, which is based on Long Short-Term Memory (LSTM)
architecture [10] but with a simpler form. We adopt GRU
to the proposed pipeline due to its simpler architecture and
good performance on sequence modeling problems.

B. Implementation Details

The network is trained in an end-to-end manner. The
cross-entropy loss is used as the loss function and the
backpropagation through time (BPTT) algorithm is applied
for optimization. We use Adagrad [7] as the optimizer with
the learning rate initialized by 0.0001 and then reduced by
a factor of 10 after every 50k steps. And the learning was
stopped after 200k iterations. The network parameters are
initialized by a Gaussian distribution with zero mean and
standard deviation of 0.01. We use a momentum coefficient
of 0.9 and a weight decay factor of 0.0005. The whole system
is implemented via Tensorflow [1].
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Fig. 3: LPN + Appearance CNN

IV. EXPERIMENTS

A. Data preprocessing

To pre-process the input data, for each face image, we
crop out the mouth region based on the landmarks’ locations.
Then we convert the cropped image to grayscale and resize
it to 40x40. The data is normalized to zero mean and unit
variance. In order to improve robustness and avoid overfit-
ting, data augmentation is applied. First, we augment data
by applying the same transformation to images in a single
sequence, e.g. random flipping, random cropping, random
distortion. Second, face movement speed is varied by random
deletion or duplication of images, and by randomly changing
the frame rate of the sequence (from 0.8 to 1.2 times of
original frame rate). Third, more non-speech sequences are
generated by randomly choosing one frame from speaking
sequence and repeating this frame to a certain length.

B. Baselines

We compare the proposed network with three standard
baselines.

Landmark Only: This baseline only uses the landmark
information. Following [5], we take the Fourier transform
for the landmark sequence, which can separate the lip move-
ments to different frequency bins. A two-layer perceptron
with leaky-ReLU activation is trained on this frequency
spectrum to make decisions. We refer this method as LO
for short.

Appearance CNN: This baseline only uses the appearance
information and takes the whole image as input. The network
consists of one convolutional layer, followed by a spatial
max pooling layer. One fully-connected layer is used at the
end for feature extraction. After the features are extracted at
each time step, they are fed into a standard GRU for feature
aggregation. We refer this method as ACNN for short.

Landmark + Appearance CNN: This baseline uses both
appearance and geometry information to make a prediction.
The network has two branches, one for appearance, and
the other one for the landmark. For the appearance sub-
branch, it is the same as ACNN. For the geometry sub-branch,
the features are extracted using two fully-connected layers.
Subsequently, the feature vector from the appearance branch
and geometry branch are concatenated together, and then fed
into GRU for feature aggregation.



Method Accuracy
Landmark Only 66.2
Appearance CNN 76.7
Landmark + Appearance CNN  77.2
LPN 72.1
LPN + Appearance CNN 79.9

TABLE II: Performance comparisons among all the baselines
methods and the proposed methods on the LSW dataset.

C. Evaluation

Baselines: We report the classification accuracies of all
methods on the test set. The LO method results in the
lowest accuracy 66.2%, which is reasonable due to the
shallow architecture and large pose variations which result
in poor landmark detection. The ACNN method uses more
facial information and a deeper network architecture, which
improves the accuracy to 76.7%. By simply fusing the
appearance and the landmark features together with the CNN
architecture (L+ACNN), we can improve the accuracy to
77.2%. Even though the appearance features already include
the landmark features, we can see that by emphasizing the
landmark representation, we can further improve the overall
performance. This proves that the landmark features is more
valuable in this task.

Our results: We achieved 72.1% accuracy by using the
proposed LPN method, which is 6% higher than the original
LO method, thanks to the deep network structure, but still 5%
lower than the ACNN network. This is reasonable since LPN
only uses 5% facial information compared to ACNN. Finally,
by combining LPN with ACNN (LPN+ACNN), we achieved
the best performance at 79.9% on this dataset, which indi-
cates that our method can better integrate geometry cues with
landmark information. The architecture is shown in Fig. 3.
The performance comparisons are illustrated in Table II.

D. Online Deployment for Active Speech Detection

We deploy the model for real-time speech detection. We
adopt a sliding window technique. At each time step, we look
back up to a fixed length of previous 7" frames (which is 20
in our case), and evaluate this acquired sequence with our
model. The result indicates whether the sequence contains
any speech activities or not from 7' frames back to now.

Table III shows the number of parameter comparisons
and speed comparisons among different methods on both
GPU and desktop. For GPU, we use a GTX 1080Ti. For
desktop, we use MacBook Pro with Intel core i5 and 8G
RAM memory. In the evaluation, we assume that all mouth
images and landmarks are already available, which is a fair
assumption, as the landmarks can be detected in real time.
As shown in Table III, compared to ACNN, our LPN method
has 10 times less parameters and is around 30% faster than
ACNN on both GPU and CPU in speed.

E. Case study

Fig. 4 illustrates some failure cases. Generally, for a
speech sequence, it’s difficult for our system to make an
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Fig. 4: Failure Cases. The top two rows are false negative
(FN) sequences, where the ground truth is labeled as speak-
ing, but our method predicts as non-speaking. The bottom
two rows are false positive (FP) sequences, where the ground
truth is labeled as non-speaking, but our method predicts as
speaking. These failure cases are even confusing for human.

Method #params GPU (fps)  Desktop(fps)
LO 28,609 1658 4133
ACNN 1,211,841 152 109
L+ACNN 1,248,641 187 128
LPN 110,017 198 138

TABLE III: Speed evaluation for different methods

accurate decision if the mouth region is rarely moving.

The top two rows are false negative (FN) cases, where the
ground truth is labeled as speaking, but our method predicts
as non-speaking. Taking a closer look at the video sequence,
we can notice that even though the person is speaking,
the mouth region rarely changes. This is challenging to
our system since we heavily rely on the correct visual
information. Using the audio signal to reinforce our system
can be a good solution to solve the problem.

The bottom rows are false positive (FP) cases, where the
ground truth is labeled as non-speaking, but our method
predicts as speaking. The sequence in the third row is also
confusing for human, the mouth gradually closes up, so our
method predicts it as speaking. In the fourth row, the person’s
mouth is widely open but doesn’t move. This is probably due
to the fact that there are lots of sequences with wide-open
mouths labeled as speaking sequences in our dataset. This
indicates that for further work, we should build a model that
can better utilize temporal information.

V. CONCLUSION

In summary, we studied the visual-based Speech Activity
Detection problem in this paper. We proposed a novel land-
mark pooling network scheme, which guides the network to
focus on small portion regions so as to work more precisely
and more efficiently. We utilized the recurrent neural network
with the gated recurrent unit for temporal information mod-
eling. We also design an efficient system with comparable
fast detection speed. Our method is evaluated on a new
large-scale challenging dataset collected from unconstrained
speech activities under various kinds of degradation. Exper-
iments on multiple evaluation settings show that our model
is both accurate and fast. We will explore more on capturing
the temporal information part to improve the performance.
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